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A B S T R A C T   

Typological ore delineation is a basic procedure that provides various bases in ore geology on which crucial 
developments rely on, in particular, those supporting mineral resource evaluation. To deal with several complex 
issues related to typological delineation of heterogeneous ore bodies, an unusual hybrid multivariate approach, 
based on a skillful combination of geochemical/geological knowledge and correspondence analysis (CA), was 
established. This approach was tested on banded iron formations (BIF) in the Bonito mine, Northeastern Brazil, 
enhancing the available geochemical knowledge by revealing grade combinations related to geological processes 
causing such deposits. Petrographic studies helped identify four main BIF-types: amphibolitic, hematitic, mar-
titic, and magnetitic itabirites. An exhaustive geochemical database comprising 1,384 BIF samples assayed for 
Fe2O3, SiO2, Al2O3, P, and Mn grades was established and classified for the aforementioned BIF-types. The 
methodology provides an updated typological model based on a unique aspect of CA that allows a simultaneous 
projection of samples and their characteristics onto axes of the same abstract space; this helps validate mathe-
matical results with geological information linked to sample attributes. The BIF typology model was established 
by applying K-means clustering to factorial scores derived through CA. Hence, the BIF typological model was 
updated, and new geochemical BIF-types helped interpret some of the main geological processes related to them. 
Geochemically, the factorial axes could be related to: 1) Iron rich BIF rocks, which are clearly represented on the 
positive side of Axis 1, comprising almost 50% of the total variance; 2) Manganese and alumina, associated with 
high silica content, by attachment to Axis 2, which describes a possible and critical terrigenous input.   

1. Introduction 

In the first decade of the 21st century, the quest for iron ore deposits 
was boosted by an increasing Chinese demand to feed its booming steel 
industry. Consequently, new economic criteria stemming from this 
scenario were developed to evaluate the feasibility of minor deposits, 
such as the Bonito mine, whose geological significance to the Neo-
proterozoic evolution of the Seridó Belt during the Brasiliano-Pan Afri-
can orogeny is also addressed. 

The Bonito iron ore mine, was originally divided into two groups 
based on varying Fe2O3 grades, as well as on their geochemical and 

petrological compositions (Barbosa, 2013). High-grade ores are repre-
sented by magnetitic ore (91.60-94.20% Fe2O3) and magnesian skarn 
(60.30-72.33% Fe2O3). The other iron ore group, considered here, 
comprises banded iron formations (BIFs) containing low-grade iron ores 
(30.97-60.30% Fe2O3), in contrast with the first group. 

This study aims to better understand the geology of the Serra dos 
Quintos Formation, a metavolcanosedimentary sequence, by identifying 
BIF-types in the Bonito iron mine, in Jucurutu, Rio Grande do Norte 
State, Northeastern Brazil. The combined multivariate methodology 
presented here embraces the multi-dimensionality of the available 
geochemical database. 
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For this purpose, the methodology applied to this deposit considers 
two aspects:  

(a) An enhanced geological/geochemical study of the ore body was 
based on similarities/distinctions between formations, providing 
a conceptual model focused on their relationships. The ’nderlying 
data model may be viewed as an “n ’ p matrix”, with n rows 
representing 1,384 samples and p columns representing concen-
trations of Fe2O3, SiO2, Al2O3, P, and Mn;  

(b) The second aspect aimed at broadly classifying ore types with 
geochemical meaning, based on correspondence analysis as a 
purely geometric method to compress data in a “p1 < p” artificial 
space, with samples and concentrations being simultaneously 
projected, using the chi-square distance applied to the matrix 
elements, appropriately classified into various grades. 

We aim to put forward a new approach based on CA along with 
geological interpretation, stemming from the modeling of lith-
ogeochemical data and petrographic BIF characterization. Based on an 
integrated mathematical/geochemical model, and by applying of a 
nonhierarchical partitional algorithm (K-means method), homogeneous 
(or acceptable heterogeneous) groups of samples were delineated, which 
are the elements of the required typology.The first consistent usage of 
automatic classification methodologies in geological sciences was per-
formed by Parks, 1966 and – among others – by Rhodes, 1969, applying 
specifically to granites. CA, as put forward by Benzécri, 1973, 1977, 
Lebart et al., 1984, Mellinger, 1987, and applied by Pereira, 1981, is a 
classical distribution-free multivariate method. Being purely geometric, 
this method can help construct a unique artificial space where in-
dividuals (samples) and properties (variables) are jointly projected. 
Meaningful BIF-types are obtained when sample projections onto sig-
nificant CA axes are clustered using a nonhierarchical method, which 
are plausibly explained in scientific terms taking advantage of previous 
CA/geochemical interpretations. Moreover, in the considered case, 
where the number of samples is relatively important (at the usual scale 
for orebody recognition), hierarchical classification cluster methods 
could be particularly cumbersome, leading to uninterpretable graphs 
due to the copious number of samples. 

2. Geological setting 

Regional framework. The Bonito mine is located in the Rio Piranhas- 
Seridó Domain (PSD) occupying an extensive area in the center portion 
of the State of Rio Grande do Norte, bounded to the east by the São José 
do Campestre Domain (SJD) and to the west by the Jaguaribeano 
Domain (JD). Both contacts between the domains are tectonic and 
defined by ductile shear zones of Porto Alegre (to the east) and Picuí- 
João Câmara (to the west), as shown in Fig. 1A (Angelim et al., 2006). 

Among the several stratigraphic schemes proposed for the Seridó 
Group, the one adopted here was presented by Angelim et al., 2006. The 
Seridó Group consists of a metavolcanosedimentary sequence called the 
Serra dos Quintos Formation at its base (Sá and Salim, 1980; Ferreira 
and Santos, 2000). The Seridó Group is divided from the base to top as 
follows: (a) Serra do Quintos Formation (NPsq), comprising ferruginous 
quartzite, hematitic and/or magnetitic itabirite, garnet-tremolite schist, 
muscovite-quartzite, gneiss, actinolite-schist with magnetite and, occa-
sionally, metaultramafic/metamafic rocks and leucogneiss; (b) Jucurutu 
Formation (NPj), mainly comprising biotite ± epitote ± amphibole 
paragneiss, with intercalations of a basal conglomerate, marbles, 
calc-silicate rocks, mica-schist, quartzite, iron formations, metavolcanic 
rocks, and metacherts; (c) Equador Formation, predominantly 
comprising muscovite-quartzite with arcosean facies containing inter-
bedded polimitic metaconglomerate; and (d) Seridó Formation, 
comprising feldspathic mica-schist or aluminous medium to high-grade 
metamorphic facies across most of the unit. Locally, marble, calc-silicate 
rocks, quartzite, and metavolcanic rocks are interbedded within the 

main lithotype. 
The Seridó Group was affected by a strong transpressional defor-

mation, by granitic magmatism and reworking by transcurrent shear 
zones during the Brasiliano-Pan-African orogeny, ca. 575 Ma (Sá et al., 
1995; Archanjo et al., 2013). This deformation is recorded throughout 
the Bonito mine by a penetrating tectono-metamorphic foliation in a 
dominant northeast direction, plunging preferentially toward the 
southeast, causing a large antiform with an N-S axial plane and 
south-dipping axis (Fig. 1A).Iron formations associated with marble, 
calc-silicate paragneiss, and quartzite of the Seridó Group could be part 
of a quartzite-pelite-carbonate sequence deposited in a shallow marine 
environment (Sá, 1994). The BIFs studied here were assumed to be a 
part of Serra dos Quintos Formation. Only the basal units of the Seridó 
Group (Serra dos Quintos and Jucurutu Formations) occur in the study 
area (Figs 1 and 2).Geochemical and isotopic studies conducted by Sial 
et al., 2015 for marble and BIFs of the Seridó Group, including a few 
samples from the Bonito mine, suggested a rift-type model with narrow 
basins and strong hydrothermal input, as previously proposed by Van 
Schmus et al., 2003 and Hollanda et al., 2015. Positive Eu e Ce anom-
alies and high Cr concentration could be explained by hydrothermal 
venting systems related to rifting with the creation of anoxic ferruginous 
conditions and leaching of mafic/ultramafic rocks (Sial et al., 2015). 

Petrography of the Bonito mine BIFs. Barbosa, 2013 considered the 
BIFs (itabirites) of the study area to be metavolcanic sediments with 
alternating bands of silicate minerals (mainly amphiboles and quartz) 
and iron oxides (hematite, magnetite, martite, and goethite) that were 
locally affected by fluids with low redox potential, marked by the 
presence of pyrite and chalcopyrite. BIF-types could not be derived 
exclusively by exhaustively assessing available information. In fact, 
petrographic studies relying on both reflected and transmitted light 
microscopy have demonstrated their indispensability in establishing 
meaningful ore typology. Hence, a mathematical classification method 
combining all available information (such as CA) is crucial in dealing 
with site-specific typological issue. Based on mineralogy, texture, 
intergrain contacts, and modal percentage, itabirites include the 
following categories: 1) silicates; composed mainly of quartz, amphi-
boles (hornblende and tremolite/Fe-actinolite), and in lesser pro-
portions, iron oxide and sulfides; and 2) iron oxides (hematite, 
magnetite, and martite), which are present in the samples and silicate 
minerals as well. Pyrite and chalcopyrite have also been described in 
some samples. The amphibolitic itabirites (AmI) are composed of 
tremolite/Fe-actinolite (15–89%), hornblende (20–70%), quartz 
(25–75%), magnetite (1–10%), and pyrite (1–10%). Their texture varies 
from grano-lepidoblastic (hornblende-amphibolitic itabirites) to 
lepido-granoblastic (tremolite/Fe-actinolite-amphibolitic itabirites). 
Under crossed-polars, quartz crystals are extensively anhedral showing 
shadowy extinction. Magnetite-martite are observed in 1–10% propor-
tion, while pyrite is rare (Fig. 3b,f; Fig. 5c,d). Hematitic itabirites (HI) 
comprise quartz (50–60%), Fe-actinolite (15–25%), and hematite 
(20%). Magnetite/martite (1–4%) and pyrite (1%) may occur in low 
amounts. Their texture is predominantly lepidoblastic with inequi-
granular Fe-actinolite crystals exhibiting orientated lamellar shapes 
within the metamorphic foliation. Goethite appears to be an alteration 
product of this mineral. Hematite shows a highly reflective white-gray 
color. Magnetite was recognized in the polished section as having a 
rose-tint color and prismatic form. Pyrite crystals were identified as 
strong yellow-colored and small prismatic grains (Fig. 3e; Fig. 5a,b). 
Magnetitic itabirites (MgI) were the most representative petrographic 
BIF-type among the samples. The slightly banded texture varies from 
lepido-granoblastic to lepidoblastic. The main minerals are quartz 
(1–70%), amphiboles (10–30%, hornblende and/or 
tremolite/Fe-actinolite), magnetite (20–70%), and martite (1–50%). 
Pyrite and chalcopyrite occur in low amounts (1–5%). In some samples 
in which hornblende was identified as the dominant amphibole, epi-
dotization was observed as an alteration product (Fig. 3c; Fig. 4e,f; 
Fig. 5e,f). Tremolite/Fe-actinolite crystals usually show 
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lamellar/acicular forms and strong pleochroism under crossed-polars. 
On polished sections, pyrite crystals are easily identified due to their 
highly reflective yellow color and cubic hipidiomorphic form. Chalco-
pyrite (most reflective yellow color) was observed as mineral inclusions 
on pyrite crystals (Fig. 3a; Fig. 4a,b). Martitic itabirites (MI) have specific 

petrographic features in a genetic and evolutionary context of the Bonito 
mine BIFs. On polished sections, martitization was interpreted as a 
mineral-phase transformation enhanced by substituting primary 
magnetite with martite, – a pseudomorph of primary iron ore (Ramdohr, 
1981; Craig and Vaughan, 1984). A lepido-granoblastic metamorphic 

Fig. 1. Locational and simplified regional geological map. A) Regional geological framework. B) Geotectonic sketch map showing critical units and shear zones 
(Adapted after Angelim et al., 2006). 
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Fig. 2. Local geology map displaying the main lithological units at the research site (Adapted and simplified after MHAG, 2013).  

Fig. 3. Samples from the borehole-cores showing 
some of the main mineralogical and structural fea-
tures of the Bonito mine low-grade BIFs: a) Magnet-
itic itabirite with millimetric sulfide-veins (pyrite); b) 
Magnetitic/martitic itabirite associated with 
amphibolitic itabirite; c) Magnetitic itabirite showing 
local intrafoliation folds; d) Martitic itabirite with an 
almost rhythmic banding; e) Irregular banding on 
hematitic itabirite with ore pods; and f) Fractured 
amphibolitic itabirite filled with goethite.   
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texture is marked by association with quartz (30–60%), amphiboles 
(20–25%), martite (15–35%), magnetite (2–15%) and pyrite (<2%) 
(Fig. 3d; Fig. 4c,d). Natural magnetism was preserved, as it was observed 
in drill-core samples. 

3. Materials and methods 

3.1. The database 

The geochemical database exploited here was obtained from an 
exhaustive recognition program developed to support economic feasi-
bility studies for the Bonito iron ore mine by MHAG Serviços e Miner-
ação company, owner of the mineral rights. 

This database was structured to comprise quantitative and qualita-
tive elements: geological records concerning lithology, borehole- 
intervals, geotechnical data, drilling-orientation paths, and sets of 
samples for geochemical analyses. 

The samples were prepared at a geomechanics laboratory of MHAG 
and sent to SGS-GEOSOL Labs. Ltd. (Minas Gerais State, Brazil) for 
treatment with lithium tetraborate fusion and XRF spectrometry to 
determine Fe2O3, SiO2, Al2O3, Cr2O3, V2O5, TiO2, CaO, MgO, K2O, Na2O, 
P, and Mn concentrations. The loss on ignition (LOI) of the samples was 
analyzed on by calcination at 1000 ◦C until they attained constant mass. 

BIF samples were collected for a petrographic investigation based on 
26 polished sections and 12 thin-sections. The quantitative variables 

considered for the CA included concentrations of Fe2O3, SiO2, Al2O3, P, 
and Mn. Originally, the database comprised all lithological records of 
127 boreholes and included non-BIF lithologies, e.g., granite, schist, 
marble, and gneiss; however only BIF borehole records were considered 
for the first round of data analysis to focus on BIF-types. Considering the 
entire database, an emphasis was given to low-grade BIFs with Fe2O3/ 
SiO2 ≤ 1.00. 

Other major oxides were excluded from the multivariate analysis as 
not all BIF samples had the required input values. The geological record 
contained 2,557 lithological descriptions with/without geochemical 
data; however downsizing the working database to 1,384 samples was 
imperative for an objective analysis. 

ANDAD 7.20 (CVRM, 2002) was applied in entirety for all factorial 
analyses. ESRI ArcMap® GIS 10.1 and Statistica® 10 (Statsoft Inc, 2010) 
were used for spatial data management and K-means clustering. 

3.2. Multivariate modeling tools 

3.2.1. Correspondence analysis (CA) 
It is a geometric data treatment methodology focused on qualitative 

variables aimed at presenting tabular data graphically to assist in 
interpretation. The basic idea behind the methodology developed in the 
1960s by Jean-Paul Benzécri (Benzécri, 1973, 1977) is that any matrix 
(input table) of non-negative numbers put together in a series of con-
tingency tables could be converted into a series of two-dimensional plots 

Fig. 4. Photomicrographs of the studied itabirites: a) 
Magnetitic itabirite with well-developed bands of 
quartz and magnetite+hornblende. Magnetite has a 
subhedral cubic form; b) Pyrite crystals exhibit cubic 
(yellow) with anhedral chalcopyrite (dark-yellow). 
These sulfides could occasionally include minerals 
from the itabiritic fabric; c) Martitic itabirite. Martite 
crystals preserving the habit of complete pseudo-
morphosed magnetite; d) Magnetitic itabirite 
partially martitized; e) Magnetitic itabirite on the 
thin-section with crossed-polars showing anhedral 
crystals of tremolite/Fe-actinolite with strong 
pleochroism and fibrous habit; and f) Polished section 
of magnetitic itabirite with highly reflective sub-
hedral magnetite crystals under plane-polarized light. 
Abbreviations: quartz (Qtz), amphibole (Amp), 
magnetite (Mag), martite (Mrt), pyrite (Py), and 
chalcopyrite (Ccp).   
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representing rows and columns for items in the same graph. 
A factorial analysis primarily aims to minimize multidimensionality 

of large datasets (Hill, 1974; Lebart et al., 1984; Mellinger, 1987; Gre-
nacre and Blasius, 2006). Avoiding unnecessary a priori assumptions as 
far as possible, CA helps reveal and evaluate relationship patterns be-
tween input data (previously unintelligible in tabular form). 

The mathematical rules for interpretation arise directly from the CA 
algorithm, as put forward by Benzécri. The first requirement, before 
applying the algorithm, is to ensure that the input matrix is a valid 
concatenation of contingency tables cross-tabulating two qualitative 
variables, with the modalities of the variables in each contingency table 
encoded so as to ensure comparability and unambiguity. 

For grade information of the Bonito mine, the above-mentioned 
requirement was met, as the initial matrix by crossing samples x 
grades can be viewed as a cross-tabulation of two “qualitative variables” 
wherein rows are modalities of the variable sample and columns are 
modalities of the variable grade. Hence, we can sum up grades for a given 
sample, adding up to 100 if the grade is given in percentage and along 
rows, for one column, representing the quantity of metal (divided by 100, 
as the grade is given in percentage) for all samples (in the case of Fe and 
Mn), and dividing the total weight of SiO2, Al2O3, and P in all samples by 
100. A similar rationale applies when contingency tables are concate-
nated in several ways, based on the premise that the closure property is 
always met. 

Unlike other factorial methods, CA is not affected by closure issues 
owing to some situations concerning geochemical concentrations. 
Multivariate modeling with CA is based on encoding original 
geochemical variables as distributional intervals translated into new 
categorical variables (Mellinger, 1987). 

As eigenvalues are calculated through diagonalization of the matrix 
of the column profiles, the individuals (samples) on the data matrix are 
treated as conditional probabilities for each column. Thus, variables and 
samples are simultaneously displayed in the same factorial space due to 
the χ2 (chi-square) metric, which is used to compute distances among 
samples. Hence, the independence of the variables is guaranteed by the 
mathematical constraints of the method (Teil, 1975; Mellinger, 1987; 
Grenacre and Blasius, 2006). 

A useful advantage of CA over other more frequently applied 
multivariate factorial statistical methods, e.g., Principal components 
analysis (PCA) is that (in the most usual case of n>p) such a method 
always produces a “p axis” (in the most usual case where proportionality 
between columns is lacking), whereas CA always produces “p-1 axes” for 
each concatenated contingency table (the dimensional reduction begins 
on a smaller basis).The interpretation as per the scope of the CA, as put 
forward by Benzécri, 1973, 1977, Lebart et al., 1984, and Pereira et al., 
2015, suggest that relationships between all projections are disclosed in 
terms of their linkage to each axis. Once outlined as per the first inter-
pretation, there is usually a need to modify the encoding of the variables 

Fig. 5. Photomicrographs of the studied itabirites: a) 
Thin-section on crossed-polars. Hematitic itabirite 
with typical banding and a grano-lepidoblastic 
texture; b) Same sample. Polished section showing 
anhedral porous hematite crystals with highly 
reflective white-coloration. Pyrite crystals occurring 
in a 1% proportion; c) Amphibolitic itabirite. Thin- 
section on plane-polarized light where a hornblende 
crystal can be seen having typical cleavage-planes, 
positive relief, and strong greenish-brown coloration 
and a grano-lepidoblastic texture; d) Same sample on 
crossed-polars. Anhedral quartz crystals can be iden-
tified due to shadowy extinction; e) Silicate band 
from a sample of magnetitic itabirite (plane-polarized 
light); and f) Same sample under crossed-polars. Ab-
breviations: Actinolite (Act), magnetite (Mag), quartz 
(Qtz), and hornblende (Hbl).   
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(and sometimes, of the individuals) in order to achieve suitable results. 
Any improvement by interactive encoding is considered “satisfactory” 
when the model emerging through CA satisfies the relevant geo-
logical/geochemical information. 

Furthermore, in line with the CA theory, the model ultimately ob-
tained as a result of the methodology is not “validated” by any statistical 
hypothesis, but by its ability to yield valuable and helpful insights, also 
helping enhance a priori geological/geochemical knowledge.Compre-
hensive theoretical explanations and several geological applications 
have been discussed well by Balladur, 1970; Benzécri, 1973, 1977; Hill, 
1974; Teil, 1975; Teil and Cheminee, 1975; Teillard and Volle, 1976; 
Valenchon, 1982; Lebart et al., 1984; Mellinger, 1987 ; Birks, 1987; Reis 
et al., 2004; Grenacre and Blasius, 2006; Patinha et al., 2007 and, Per-
eira et al., 2015. 

3.2.2. K-means clustering method 
This class of partitioning methods refers to gathering objects into 

mathematically similar groups around a point or centroid considered 
representative of a group. The groups are generated as a broad initial 
partition with no imposed hierarchical structure. The mathematical 
rules for creating the groups account for maximum similarities between 
objects within a group and maximum variance between groups. 

The K-means clustering method, among others, is frequently used 
because of its simplicity, ease of implementation, efficiency, and 
acceptable results under low computational costs (Jain, 2010; Amorim, 
2016). The common thread between nonhierarchical grouping methods 
is that the final scheme is built as a non-supervised classification model. 

According to Jain, 2010, the algorithm is described by the following 
formula: let X = {xi}, where i = 1,...,n, for a set of n d--dimensional 
points to be grouped into a set of K clusters, C = {ck , k = 1,...,K} in the 
Euclidean space. The K-means routine must find a partition such that the 
squared mean error between the empirical mean (µk) of a cluster (ck) and 
the point of the cluster will be minimized given by 

J

(

ck

)

=
∑

xi∈ck

⃒
⃒
⃒
⃒
⃒
|xi − μk||

2 (1) 

Eqn 1 defines the minimum variance between objects in a cluster, i. 
e., they have maximum similarity. The empirical mean (µk) is inter-
preted as the centroid of the cluster (ck). The general solution of K-means 
clustering is obtained by minimizing the sum of the squared mean errors 
given by 

J(C)=
∑K

k=1

∑

xi∈ck

⃒
⃒
⃒
⃒
⃒
|xi − μk||

2 (2) 

K-means clustering is fundamentally executed recursively until 
convergence and/or until it reaches the final number of pre-defined K 
clusters according to Eqn 1 and Eqn 2. Maximizing variance between 
clusters means that the dissimilarity between K groups is mathemati-
cally the highest. 

In most cases, arbitrary seeds or centroids are assigned as starting 
points in the iterative process (Jain, 2010), which are iteratively upda-
ted until their positions meet the constraints of Eqn 1 and Eqn 2. The 
outcomes are represented by clusters with their centroids gathering a 
finite number of objects. 

Similar to hierarchical clustering methods, K-means clustering also 
calls for a stopping-rule based on a mathematical criterion that could 
help reveal the “ideal” number of clusters. A dendrogram helps intui-
tively interpret its graphical display, while the computation of cluster 
centers only shows samples gathered around each center. 

Some studies throughout the decades dealt with stopping-rules or 
clustering indexes. Among these, Calinski and Harabasz, 1974 presented 
a criterion based on variance within/between groups; Milligan and 
Cooper, 1985 evaluated the performance of 30 clustering criteria under 
several conditions through a series of Monte Carlo simulations; 

Rousseeuw, 1987 proposed a measure based on the average dissimilar 
distances between points within a cluster and the average minimum 
distance between these points and other clusters; Bezdek and Pal, 1998 
reviewed two clustering methods (K-means and single linkage) through 
evaluation of three validation indexes and examined their most reliable 
technical features; Saitta et al., 2008 and Liu et al., 2010 assessed some 
of the well-known validation indexes and presented validation measures 
for the best classification of a set of data points. 

4. Results of multivariate data modeling 

4.1. Exploratory analysis 

Among 127 drilling boreholes, 86 represented BIFs on superficial 
and/or sub-superficial levels. Therefore, these boreholes provided the 
main geological information (Fig. 6). 

The entire dataset is represented by 1,384 BIF samples assayed for 
five grades (Fe2O3, SiO2, Al2O3, P, and Mn), which are the variables 
arranged as columns of the basic matrix. Table 1 lists the basic 
descriptive statistics. Note that high CV values could signify high- 
variability. 

4.2. BIF typology model based on a multivariate hybrid approach 

Geochemical evaluation using CA. A new geometric-space was ob-
tained using CA, where samples and variables were jointly projected. In 
contrast to some algorithms such as cluster/discriminant analysis, CA 
demands an intrinsic knowledge of the underlying geochemical phe-
nomena for a reasonable interpretation of the results, projections onto 
axes defining the new geometric-space. 

As the CA method requires qualitative variables as input, the grade- 
range for each variable was split into two/three classes. The limits of 
each class were iteratively established so that each class conveyed a 
geological meaning; classes were ultimately split (Table 2). Hence, each 
initial quantitative variable (grade) was substituted for a code (1, if the 
grade belonged to a prescribed class, and 0 otherwise). Thus, the initial 
table was transformed into an indicator matrix. 

Table 3 shows the eigenvalues calculated through iterations 
considering values presented in Table 2. At first sight, one can observe 
that 79.11% of data variance is explained by the first three axes, even 
though 66.33% clearly describes the main scenario where the class- 
encoded variables help build an idea for the typological model. It is 
noteworthing that seven axes are sufficient to explain a total of 12 
classes, given that one degree of freedom is subtracted for each one of 
the five contingency tables whose concatenation gave rise to the input 
indicator matrix. 

Table 4 reveals the main absolute contributions spread along the 
seven axes representing the influence of each class on an axis. The 
variables Fe1 and Fe3 together contribute up to 28% of on Axis 1. The 
same can be noted with Al1 and Al2 which are well-positioned on Axis 2 
(Fig. 7). 

Here, the use of CA as a modeling-tool required that some samples be 
studied petrographically. Some geochemical patterns could be derived 
by interpreting factorial axes; although, without some guiding samples 
for a supervised classification no meaningful geological information 
could not be extracted and/or combined with other available data 
(Fig. 8). Therefore, this crucial information was provided by the petro-
graphic and geochemical data (Table 5). 

Application of K-means clustering: building a bridge between the 
factorial space and BIF typological model. K-means clustering was 
applied to establish the limits between BIF-types first interpreted as 
domains on the factorial space. A numerical solution was obtained 
through an algorithm using Statistica® 10 with the original code 
developed by Hartigan and Wong, 1979. For this task, the input data was 
conveyed by factorial coordinates of each sample from axes 1 and 2 
(Fig. 8). K-means clustering was conducted considering that the first 
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model comprised 4 clusters while the last model had 12 clusters. Having 
few variables (in this case, axes 1 and 2), the algorithm was set to 
perform ten iterations; however, a solution was obtained after 2 itera-
tions.Through K-means clustering method, the BIF samples were 
segregated into groups around one cluster center onto the factorial 
plane. Factorial data processing did not require preselected seeds, and 
the K cluster centers were determined on reaching the final number of 
iterations. As the input data was displayed in a Cartesian plane, no 

anomalies were expected within the Euclidean distances. 
In section 3.2.2, we briefly introduced some studies concerning 

validation indexes for the best clustering models. Notwithstanding, 
following the calculations obtained through the algorithm proposed by 
Hartigan and Wong, 1979 coupled with the variance ration criterion 
(VRC) by Calinski and Harabasz, 1974, the K-means clustering outcomes 
were assessed similarly as in Fisher’s one-way analysis of variance 
(F-test) approach. The maximum values of the VRC index could reveal 
the most appropriate number of clusters for the typological model. It is 
noteworthy that the petrographic analysis of the BIF-types helped 
identify the groups.The clustering tests yielded several results showing 
that an increasing number of partitions could directly reflect BGSS and 

Fig. 6. Map showing the location of the boreholes.  

Table 1 
Descriptive summary exploratory analysis (%wt).  

Variable Mean Median Min. 1st Quant. 3rd Quant. Max. Std. Dev. C.V. 

Fe2O3 41.68 43.18 4.81 38.01 46.90 70.01 8.54 20.48 
SiO2 56.83 55.68 28.11 52.28 60.17 90.23 7.77 13.67 
Al2O3 1.134 0.505 0.010 0.250 0.905 18.230 2.26 199.60 
P 0.041 0.040 0.007 0.030 0.050 0.252 0.02 55.82 
Mn 0.309 0.210 0.010 0.130 0.360 2.030 0.29 95.20  

Table 2 
– Class limits defined by CA modeling.  

Variable Class Cum. Freq. Grade limits% Average content 

Fe2O3 Fe1 0.334 4.18–40.60 32.40 
Fe2 0.668 40.60–45.62 43.17 
Fe3 1.000 45.62–70.10 49.50 

SiO2 Si1 0.501 28.11–55.68 51.26 
Si2 1.000 55.68–90.23 62.42 

Al2O3 Al1 0.517 0.010–0.500 0.27 
Al2 1.000 0.500–18.23 2.06 

P P1 0.547 0.007–0.040 0.03 
P2 1.000 0.040–0.252 0.06 

Mn Mn1 0.368 0.010–0.160 0.10 
Mn2 0.679 0.160–0.300 0.23 
Mn3 1.000 0.300–2.030 0.63  

Table 3 
- Eigenvalues.  

Axis Eigenvalue % Explained % Cumulated 

1 0.1845 49.98 49.98 
2 0.0604 16.35 66.33 
3 0.0472 12.78 79.11 
4 0.0357 9.67 88.78 
5 0.0234 6.34 95.12 
6 0.0167 4.51 99.64 
7 0.0013 0.36 100  
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WGSS values. Lower and higher values for WGSS and BGSS were esti-
mated, respectively, as K increased. VRC tests were performed for both 
axes showing the F-statistics estimates. Table 6 shows the main results of 
K-means clustering. 

The K3, K4, and K5 models showed broad sample groupings that were 
interpreted as unsatisfactory typological models due to an excessive mix 
of petrographic samples. Additionally, a BIF typological model was ex-
pected to appropriately reflect geochemical composition. The K6 model 
had the maximum VRC mean among the first eight clustering models. 
However, cluster No. 6 grouped all HI, MgI1, MgI2, MgI3, MgI5, and 
MgI7 samples and almost 22% of the total samples. The K6 model was 
the first to present a cluster with no associated petrographic sample.The 
K7 model had the third lowest VRC mean among the first eight clustering 
models, although exhibited petrographic samples throughout each 
cluster. This aspect helps geochemical interpretation; however, it still 
has lower VRC values. The K8 model had the third highest VRC mean and 
presented a cluster with no associated petrographic sample. Moreover, 
the highest proportion of sample gathering was 17% (clusters No. 4 and 
No. 6). Models K9 to K12 did not receive any further consideration due to 
the existence of two clusters (in each model) with no grouped petro-
graphic sample, although their VRC mean were maximized (Table 6). 
These cluster models make geochemical interpretation considerably 
challenging and probably helping obtain no information. Considering 
the above, the K-means model with eight clusters (K8) provided the most 
appropriate typological arrangement in terms of balancing geochemical 
profiles of the samples and the statistical constraints (Table 7 and Fig. 9). 

5. Discussion 

5.1. CA results 

During the CA modeling, a question emerged as to how an appro-
priate encoding scheme could be obtained by splitting geochemical 
content of variables into grade limits (Table 2). This is possible by 
appropriately utilizing the chi-square distance as a measure for the dual 
variables-samples representation onto a factorial plane. It relies on the 
fact that variables and samples are profiles that are encoded as condi-
tional frequencies (Lebart et al., 1984). According to Benzécri, 1977 and 
Lebart et al., 1984, an invariance of results is guaranteed by the 
chi-square metric because of the inverse of the conditional frequency 
weight for each element of the data matrix. In this matter, situations 
could arise as the first round of encoding begins, such as in the CA 
geochemical modeling of the BIF typology. Two classes of the same 
variable plotted in the same sector were first noticed for SiO2, Al2O3, and 
P contents (Fig. 7). Lebart et al., 1984 reported an aggregation of similar 
profiles does not induce a loss of information in certain categories. 
Meanwhile, increasing the number of factorial divisions of a variable 
does not improve results. 

In terms of the geochemical findings, Figs. 7 and 8 show encoded 
variables and samples projected onto the CA factorial planes, observa-
tions that could be drawn include: 1) Samples rich in Fe2O3 were posi-
tioned on the positive side of the plane of Axis 1 and they are essentially 
represented by hematitic and magnetitic itabirites. Samples near Axis 2 
are likely to be rich in Al2O3. MgI8 was a representative sample of this 
case; 2) The negative side of Axis 1 represents itabirites depleted in 
Fe2O3. Nevertheless, one magnetitic itabirite (MgI4) was positioned 
near the amphibolitic itabirites (AmI1, AmI2, and AmI3) with high 
Al2O3 content; 3) Axis 2 defines the amount of Al2O3 present in 
geochemical samples. This variable has an outstanding absolute 
contribution (Table 4). The locations of samples MgI4, AmI1, AmI2, 
AmI3, and MI2 is explained by the presence of hornblende (an alumi-
nous amphibole);4) P grades have an insignificant geochemical meaning 
on plane A1-A2 due to its low contribution. The most significant con-
tributions of this variable are related to Axis 4 alone. Therefore, no valid 
correlations can be made due to the low percentage of explained vari-
ance for that factor (Table 3). 

Table 4 
- Absolute contributions of the classes. The bold values refer to threshold con-
tributions on the three main axes (AC > 8.3%).  

Class Axis1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 

Fe1 21.41 1.87 2.34 2.28 8.83 3.11 26.65 
Fe2 0.33 11.83 32.19 0.09 16.96 5.20 0.01 
Fe3 16.53 4.31 17.25 1.45 1.32 0.27 25.66 
Si1 16.95 1.59 1.89 2.21 3.41 1.03 22.92 
Si2 17.00 1.59 1.90 2.21 3.42 1.03 23.00 
Al1 0.33 23.03 2.10 3.15 12.96 6.33 0.46 
Al2 0.35 24.62 2.24 3.37 13.85 6.77 0.49 
P1 4.28 1.67 2.02 23.73 5.59 8.00 0.02 
P2 5.17 2.01 2.44 28.65 6.75 9.66 0.02 
Mn1 9.13 11.48 0.28 6.87 0.25 34.67 0.44 
Mn2 0.12 15.92 15.58 22.53 11.59 3.18 0.02 
Mn3 8.41 0.09 19.79 3.46 15.06 20.76 0.32  

Fig. 7. Projection of classes of variables onto plane A1-A2. Arrows indicate the direction of grade variation according to Table 2.  

H.R.N. Fonteles et al.                                                                                                                                                                                                                          



Applied Geochemistry 123 (2020) 104779

10

5.2. Geochemical interpretation 

The Mn content in the Bonito mine BIFs is significantly low to form 
manganese ore minerals. However, the Mn grade could be related to a 
possible continental input to the basin, through terrigenous sediments 
deposited due to fluvial systems. Additionally, Mn grades tend to occur 

Fig. 8. Projection of classes of variables and samples onto plane A1-A2. Some petrographic samples occupy the same position in the plane: AmI1=AmI2=AmI3, 
MgI1= MgI2= MgI7, MI1=MI3, and HI3=MgI. 

Table 5 
Geochemical composition of the petrographic samples.  

BIF type Sample Fe2O3 SiO2 Al2O3 P Mn 

Amphibolitic Itabirite AmI1 18.28 68.96 12.54 0.049 0.17 
AmI2 39.56 57.90 2.25 0.056 0.22 
AmI3 30.75 68.33 0.57 0.057 0.29 

Hematitic Itabirite HI1 52.71 46.38 0.82 0.050 0.04 
HI2 51.83 47.49 0.54 0.030 0.11 
HI3 50.57 49.01 0.26 0.010 0.16 

Martitic Itabirite MI1 43.54 56.12 0.24 0.031 0.06 
MI2 36.78 58.91 3.37 0.021 0.92 
MI3 42.06 57.28 0.49 0.040 0.13 
MI4 42.98 56.72 0.01 0.031 0.26 

Magnetitic Itabirite MgI1 53.98 45.69 0.10 0.072 0.15 
MgI2 46.18 53.52 0.10 0.041 0.16 
MgI3 47.05 52.53 0.34 0.020 0.06 
MgI4 38.21 61.02 0.54 0.032 0.20 
MgI5 45.53 54.16 0.19 0.051 0.07 
MgI6 50.01 48.97 0.17 0.039 0.82 
MgI7 45.96 53.47 0.40 0.052 0.12 
MgI8 45.56 52.61 1.54 0.034 0.25  

Table 6 
VRC results through Kn-means clustering.  

n Axis 1 Axis 2 VRC Mean 

BGSS WGSS VRC-A1 BGSS WGSS VRC-A2 

3 440.20 154.29 1969.98 168.50 171.56 678.18 1324.08 
4 461.23 133.26 1592.10 246.92 93.14 1219.42 1405.76 
5 526.15 68.35 2654.01 223.33 116.73 659.58 1656.79 
6 539.05 55.44 2679.64 264.64 75.42 967.01 1823.33 
7 509.07 85.42 1367.66 295.59 44.47 1525.48 1446.57 
8 539.19 55.30 1916.44 292.85 47.22 1219.18 1567.81 
9 556.83 37.66 2541.30 305.10 34.96 1499.82 2020.56 
10 561.56 32.94 2603.02 306.95 33.11 1415.11 2009.06 
11 560.34 34.15 2252.85 311.30 28.77 1485.69 1869.27 
12 570.17 24.32 2923.95 315.44 24.63 1597.50 2260.72 

n – Number of generated clusters; BGSS – Between groups sum of squares; WGSS – Within-group sum of squares; VRC – variance ratio criterion. 

Table 7 
Summarized K-means results. The means of clusters were positioned as factorial 
coordinates on the A1-A2 plane.  

Cluster Cluster means 
(variable 
coordinates) 

Number of clustered 
samples 

BIF cluster 

Axis1 Axis2 

1 0.07 − 0.14 174 MgI6 
2 0.23 0.30 113 MgI8 
3 − 0.16 − 0.75 176 MI1-MI3-MI4 
4 0.63 0.58 239 HI1–HI2 
5 − 0.81 0.27 164 MI2 
6 0.80 − 0.34 239 HI3–MgI1– 

MgI2–MgI3–MgI5– MgI7 
7 − 0.65 0.67 105 AmI1-AmI2-AmI3-MgI4 
8 − 0.86 − 0.27 174 X-itabirites  
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along with SiO2 content and, there is seemingly no relation to Fe2O3 
enrichment. Oxidation during metamorphism and/or weathering events 
do not concentrate Mn within rich Fe2O3 itabirites. Martitic and 
amphibolitic itabirites (MI and AmI) could have higher Mn 
concentrations. 

The geochemical behavior of iron and manganese in sedimentary 
processes are almost independent. As sedimentary processes started 
forming the BIFs of the Bonito mine, manganese presumably did not 
precipitate with iron compounds and continued dissolving in water due 
to specific pH-Eh conditions (Krauskopf, 1957). Grouping magnetitic 
and hematitic itabirites suggests that oxidation processes could have 
occurred independently, and hematitic itabirites could have the same 
metallogenesis based on their geochemical peculiarities. Martitization 
occurred with magnetitic itabirites as well; this is related to the loss of 
FeO molecules. Nevertheless, the newly formed iron mineral still retains 
its magnetic properties. Fig. 10 shows that martitization could be 
interpreted as a process occurring with an increase in Mn and SiO2 
amounts. 

6. Conclusions  

• Petrographic studies helped clearly identify four main BIF-types. 
Throughout the CA/ multivariate data analysis, petrographic infor-
mation was reconciled with a large geochemical database offering a 
supervised CA modeling methodology;  

• As the main outcome of the BIF typological model proposed here, it 
can be stated that not all BIF petrographic types were separated into 

purely distinct groups over a factorial plane. Clearly, CA using 
geochemical data has shown that some a priori BIF-types are closely 
associated with each other. Although CA projections clearly 
demonstrated the distribution of samples throughout the factorial 
plane along with geochemical classed-variables, a post-processing 
classification method became imperative for the geochemical 
groups. Therefore, K-means clustering was considerably suited for 
the task;  

• The choice of Calinski and Harabasz’s criterion was justified by the 
results obtained by others (Milligan and Cooper, 1985; Saitta et al., 
2008; Liu et al., 2010) when comparing some of the best-known 
validity indexes. However, analyzing VRC values brought up some 
issues usually not addressed in specific K-means clustering studies; 
one that became apparent was interpreting the VRC or any validity 
index for uncorrelated orthogonal axes as variables. In our approach, 
choosing the K8-means partition as a BIF typological model was 
aided by petrographic analyses;  

• It was impossible to verify whether martitization occurred due to 
medium-high temperatures as in amphibolite facies metamorphism 

Table 8 
Proposed typological classification for the BIFs of the Bonito mine.  

Cluster BIF cluster BIF typology 

1 MgI6 Magnetitic Itabirite (MgI) 
2 MgI8 Aluminous-Magnetitic Itabirite 

(Al–MgI) 
3 MI1-MI3-MI4 Martitic Itabirite (MI) 
4 HI1–HI2 Hematitic Itabirite (HI) 
5 MI2 Aluminous-Martitic Itabirite (Al-MI) 
6 HI3–MgI1– MgI2–MgI3–MgI5– 

MgI7 
Hematitic-Magnetitic Itabirite 
(H–MgI) 

7 AmI1-AmI2-AmI3-MgI4 Magnetitic-Amphibolitic Itabirite 
(Mg-AmI) 

8 X-itabirites Silicate-Martitic Itabirite (Si-MI)  

Fig. 9. Plane A1-A2 showing the K-clusters for the Bonito Mine BIF typology. Numbers between parentheses indicate the number of samples grouped by each point in 
the plane. Red squares depict the centroid of each delimited cluster. 

Fig. 10. Factorial plane displaying the BIF typological model based on K-means 
post-processing. Gray-circles with geochemical variables depict the relative 
enrichment (upward blue-arrow) or depletion (downward red-arrow) of 
chemical content. Phosphorus content was unrepresented due to its low sta-
tistical significance in this factorial setting. BIF typology acronyms can be 
referred to from Table 8. 
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or due to strong weathering, as has been reported for other BIF-ore 
deposits (Barros, 1963; Ramdohr, 1981; Veríssimo, 1999; Klein, 
2005). Martitic itabirites tended to be dominant in the negative 
sector of Axis 1, indicative of an increase of silicates on that sector of 
the factorial plane. 

7. Future work 

The BIFs of the Serra dos Quintos Formation are now advantageously 
understood in terms of geological processes. Typology modeling could 
help disclose aspects useful for enhancing geological modeling, mining 
planning, ore processing, etc. 

Further research could consider the spatial distribution of BIF-types 
throughout the study area. Once the BIF typological model is established 
and geochemical samples are typologically known, such a novel 
geological data ensemble could be available for 3D typological 
modeling. Thus, the entire itabiritic body could be modeled and volu-
metric information could be evaluated. 

To a better understand ore-forming processes, iron isotope studies on 
itabirites focusing on chemical fractioning considering the initial 
depositional processes until major metamorphic events could be 
conducted. 
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47–79. 

Barbosa, I.G., 2013. Mina do Bonito – Tipologia e geoquímica dos minérios de ferro, 
Jucurutu/RN – Brasil. M.Sc. Dissertation. Department of Geology, Federal University 
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and related marbles in the Seridó Belt (NE Brazil): REE, C, O, Cr and Sr isotope 
evidence. J. S. Am. Earth Sci. 61, 33–52. 

Statsoft Inc, 2010. Statistica 10 Enterprise User’s Manual. Tulsa.  

H.R.N. Fonteles et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.apgeochem.2020.104779
https://doi.org/10.1016/j.apgeochem.2020.104779
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref2
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref2
http://refhub.elsevier.com/S0883-2927(20)30271-7/optonN9KI141j
http://refhub.elsevier.com/S0883-2927(20)30271-7/optonN9KI141j
http://refhub.elsevier.com/S0883-2927(20)30271-7/optonN9KI141j
http://refhub.elsevier.com/S0883-2927(20)30271-7/optonN9KI141j
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref3
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref3
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref3
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref3
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref4
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref4
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref5
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref5
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref5
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref6
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref6
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref7
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref7
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref8
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref8
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref9
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref9
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref10
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref10
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref11
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref11
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref13
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref13
http://biomonitor.ist.utl.pt/%7Eajsousa/Andad.html
http://biomonitor.ist.utl.pt/%7Eajsousa/Andad.html
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref15
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref15
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref15
http://refhub.elsevier.com/S0883-2927(20)30271-7/opteuglswS1Zx
http://refhub.elsevier.com/S0883-2927(20)30271-7/opteuglswS1Zx
http://refhub.elsevier.com/S0883-2927(20)30271-7/opteuglswS1Zx
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref16
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref16
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref17
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref17
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref18
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref18
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref18
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref18
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref19
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref19
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref20
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref20
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref20
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref21
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref21
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref22
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref22
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref22
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref23
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref23
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref23
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref24
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref24
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref24
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref25
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref25
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref26
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref26
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref27
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref27
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref28
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref28
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref28
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref29
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref29
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref29
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref30
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref30
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref31
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref31
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref32
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref32
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref32
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref33
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref33
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref34
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref34
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref35
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref35
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref36
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref36
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref36
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref37
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref37
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref37
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref37
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref38
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref38
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref39
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref39
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref39
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref39
http://refhub.elsevier.com/S0883-2927(20)30271-7/sref40


Applied Geochemistry 123 (2020) 104779

13

Teil, H., 1975. Correspondence factor analysis: an outline of its method. Math. Geol. 7 
(1), 3–12. 

Teil, H., Cheminee, J.L., 1975. Application of correspondence factor analysis to the study 
of major and trace elements in the Erta Ale Chain (Afar, Ethiopia). Math. Geol. 7 (1), 
13–30. 

Teillard, P., Volle, M., 1976. Détection des points aberrants en analyse factorielle des 
correspondances. Annales de l’Inséé 22/23, 237–254. 
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