Mine Planning and Equipment Selection 1995

Edited by
RAJ K. SINGHAL
Université Laval, Québec / Federal Government of Canada
International Journal of Surface Mining, Reclamation and Environment, Canada

ANIL K. MEHROTRA
The University of Calgary, Alberta, Canada

JOHN HADJIGEORGIOU
Université Laval, Québec, Canada

RICHARD POULIN
The University of British Columbia, Vancouver, B.C., Canada

Associate editors
KOSTAS FYTAS & JEAN-LUC COLLINS
Université Laval, Québec, Canada

E. M. DE SOUZA
Queen’s University, Kingston, Canada

OFFPRINT

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1995
Exploitation planning in slate quarries by merging the recovery and quality indices

IST/CVRM, Lisbon, Portugal
J. Taboada
Universidad de Vigo, Spain

ABSTRACT: The rational exploitation planning of slate quarries requires to forecast the in situ value of the material to be extracted, in order to include this value in the detailed production scheduling programme of the venture. Two components that relate the observable geological/technological attributes to the above considered in situ value are considered in this paper: the quality index of the plate and the recovery index of the exploitation. Once established these two indices by Correspondence Analysis and detected their spatial continuity by variography (auto and cross correlation), they are estimated in the exploitation volumes by Co-Kriging. The estimated value of the combined index is the basis for further planning.

A case study, referring to the Valdeorras slate quarry, is presented for the purpose of illustrating the methodology. The estimated values are validated by using real data supplied by the exploitation experts of the quarry.

Key words: Slate quarry; Regionalised variable; Recovery index; Quality index; Correspondence Analysis; Variography; Co-Kriging.

1- INTRODUCTION

When planning the exploitation of slate quarries, two components of the objective function should be taken into account: the costs of exploitation and the value of the material to be extracted. The first component, apart from other factors, depends on the exploitation recovery; the second component is related to the quality of the material to be extracted, for a given market situation. These two components - recovery and quality - are summarised by the methodology given in Pereira et al., 92 and two indices are produced, each one of which reflecting a specific feature of the evaluation problem. In order to combine these two indices, conveying information from recovery to quality and conversely, a new step was added to the original methodology. This step consists of calculating the cross-variogram of the two indices by:

\[\gamma_{12}(h) = \frac{1}{2} \sum_i \left[I_1(x+h) - I_1(x) \right] \left[I_2(x+h) - I_2(x) \right] \] \hspace{1cm} [1]

\[I_1 \text{ - Quality index} \]
\[I_2 \text{ - Recovery index} \]
\[x \text{ - co-ordinates} \]
\[h \text{ - lag} \]

and estimating the two indices in the exploitation units by Co-Kriging (Journel & Huijbregts, 1978), applying the system [2], where \(n \) is the number of samples and \(\lambda_{ij} \) are the Co-Kriging weights.

\[\sum_{i'=1}^{n} \gamma_{ij} (x_{i'}, x_{ij}) + \mu_{ij} = \gamma_{ij0} (x_{ij}) \]
\[\forall i'=1, \ldots, n \quad \forall j \neq i, i' \]

\[\sum_{i=1}^{n} \lambda_{ij} = 1 \] \hspace{1cm} [2]

\[\sum_{i} \lambda_{ij} = 0 \quad \forall j = i, i' \quad \forall j \neq j' \]

The proposed methodology, generalised to cope with the problems arising from the exploitation planning of slate quarries, was applied to the...
Valdeorras quarry, located in Spain. The geological and geotechnical factors that influence the slate quality and exploitation conditions are of stratigraphic, structural and metamorphic nature.

2 - DATA CAPTURE

The basic attributes on which the recovery and quality depend were scrutinised as given in table I:

Table I - Recovery and quality attributes to a slate exploitation

<table>
<thead>
<tr>
<th>RECOVERY INDEX (I_1)</th>
<th>QUALITY INDEX (I_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° fractures/m</td>
<td>Ultrametamorphised slate</td>
</tr>
<tr>
<td>n° Kink bands/m</td>
<td>Kink-bands</td>
</tr>
<tr>
<td>Alteration</td>
<td>Quartz - veins</td>
</tr>
<tr>
<td>RQD</td>
<td>Sand - laminations</td>
</tr>
<tr>
<td></td>
<td>Oxidation</td>
</tr>
<tr>
<td></td>
<td>Carbonates</td>
</tr>
<tr>
<td></td>
<td>Multicrenulated slate</td>
</tr>
<tr>
<td></td>
<td>Crenulation</td>
</tr>
</tbody>
</table>

These two sets of attributes were captured in 9 drill-holes, by counting the occurrence of their categories in 5m supports. The classification was made by direct observation of the selected attributes on the core samples using video images and pericel information.

3 - INDEX CALCULATION

By applying the equation (Pereira et al., 1992),

$$f(i) = \frac{1}{\sqrt{\lambda} \cdot q} \cdot \sum_{k=1}^{q} W(k) \cdot \sum_{l=nc(k)+1}^{I} x(i,l) \cdot p(l)$$ \[3\]

where

- $f(i)$ is the index of support i
- λ is the eigenvalue associated with the discriminant axis
- q is the number of attributes k
- $W(k)$ is the weight given to attribute k
- $nc(k)$ is the number of categories of attribute k
- $x(i,l)$ is the grade of membership of support i to category l
- $p(l)$ is the projection of category l onto the discriminant axis

The two indices were calculated on the basis of the attributes given in Table I. The system of weights $W(K)$ and the attribute classes were modified interactively until a validation was reached against the expert opinion of the quarry management. Also, the archetypes of the poles of discrimination for both indices were established according to the experience of what is considered the extremes of recovery and quality by the quarry management.

Fig. 1 - (a) and (b) Semi-variograms for I_1 and I_2. (c) Cross-variogram of $I_1 I_2$.

206
4 - ESTIMATION OF THE INDICES IN EXPLOITATION UNITS

The omnidirectional variograms and cross-variogram of the two indices were calculated as shown in Fig.1:

Hence, the variogram parameters are summarised in Table II:

Table II - Theoretical spherical models parameters

<table>
<thead>
<tr>
<th></th>
<th>C₀</th>
<th>C₁</th>
<th>A₁</th>
<th>C₂</th>
<th>A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>0.20</td>
<td>1.00</td>
<td>20m</td>
<td>6.120</td>
<td>120</td>
</tr>
<tr>
<td>I₂</td>
<td>0.03</td>
<td>0.14</td>
<td>20m</td>
<td>0.007</td>
<td>120</td>
</tr>
<tr>
<td>I₁I₂</td>
<td>0.00</td>
<td>0.18</td>
<td>20m</td>
<td>0.130</td>
<td>120</td>
</tr>
</tbody>
</table>

CONCLUSIONS

The proposed methodology allows the construction of two indices in slate quarries, each one of which reflects features of the material to be extracted: the recovery index is linked to the exploitation costs and the quality index summarises the value of the slate.

The two indices were calculated in the available drill-holes and their estimation in the production zone was performed by Co-kriging.

When the image of a working face is available, the recovery index can be calculate in the same support as drill-holes and the recovery index for that face can be inferred by the Co-kriging estimation procedures, permitting to guide the short term exploitation planning. This is the main advantage conveyed by the proposed Co-kriging method, since it is most possible to capture, in the face, the attribute in which the quality index is based.

ACKNOWLEDGEMENTS

We are thankful to JNICT for granting the research conducted.

REFERENCES

FROM THE SAME PUBLISHER:

Hoeck, E., P.K. Kaiser & W.F. Bawden 90 5410 186 5
Support of underground excavations in hard rock
1995, 28 cm, 232 pp., Hfl. 95 / $45.00 / £35
(No rights India)
(Student edn., 90 5410 187 3, Hfl. 45 / $19.50 / £16)
A comprehensive volume dealing with the design of rockbolts,
dowels, cable bolts and shotcrete for underground excavations in
hard rock. Many practical examples are given and extensive use is
made of user-friendly software developed specifically for this applica-
tion (available separate). Topics covered include rock mass class-
ification systems, shear strength of discontinuities, analysis of struc-
turally controlled failures, in situ and included stresses, estimating
rock mass strength, support design for overstressed rock as well as
discussions on different types of underground support.

Demirel, Hamit & Salih Ersayin (eds.) 90 5410 513 5
Progress in mineral processing technology – Proceedings of the
5th international mineral processing symposium, Cappadocia,
Turkey, 6-8 September 1994
1994, 25 cm, 596 pp., Hfl. 195 / $110.00 / £72
Recent progress in mineral processing, with special emphasis on
processing of industrial minerals both fundamentally & technologi-
cally. Includes papers on the application of mineral processing tech-
niques to environment related problems. Topics: Communion;
Gravity, Magnetic & electrostatic separation; Flotation fundamen-
tals; Flotation technology; Industrial minerals; Coal processing;
Hydrometallurgy; Gold & silver; Agglomeration; Dewatering; Novel
techniques; Modelling, simulation & control. 80 papers.

Jeremic, M.L. 90 5410 113 X
Rock mechanics in salt mining
1994, 25 cm, 544 pp., Hfl. 175 / $99.00 / £65
(Student edn., 90 5410 103 2, Hfl. 95 / $55.00 / £35)
5 chapters consider general geology, folding & faulting structures
composition of salt & form of salt bodies with the simplifications. 3
chapters deal with the exploration & opening of salt deposits with the
aspect of design of safe & stable mine structures, and risk of
water inflow into the mine. 3 chapters analyse deformation & failure
of the salt due to elasto-plastic, creep & outbursts loading conditions.
5 chapters discuss strata mechanics & control for different mining
systems of flat, inclined & massive salt bodies, as well as solution
mining & excavation for storage. The last chapter presents the sta-
bility analyses to the mine structures in regard to salt mining sub-
sidence. Author: Laurentian Univ., Sudbury, Canada.

Bawden, W.F. & J.F. Archibald (eds.) 90 5410 325 6
Innovative mine design for the 21st century – Proceedings of the
international congress on mine design, Kingston, 23-26 August 1993
1993, 25 cm, 1054 pp., Hfl. 230 / $130.00 / £85
A state-of-the-art on technology, innovative mining practices, & antici-
pated evolutionary trends in the various fields of mining engi-
neering. Topics: Slope stability & rock mechanics; Underground sup-
port & backfill; Grade estimation & mine feasibility; Open pit
planning & design; Underground planning & design; Machinery,
materials handling & mine maintenance; Mine environment; Mine
management; Research & development.

Pasamehmehnegu, A.G., C. Karpuz, S. Eskikaya & T. Hizal (eds.)
Mine planning and equipment selection 1994 – Proceedings of the
third international symposium, Istanbul, 18-20 October 1994
1994, 25 cm, 964 pp., Hfl. 210 / $125.00 / £79
The latest technological developments have proved an increase in
both the types and the capacities of equipments used in mining activ-
ities. As a result of these improvements mine planning and equip-
ment selection are of crucial importance. The proceedings include
valuable contributions on topics such as design and planning of sur-
face and underground mines; mine simulation and mine plan gener-
atlon; mine evaluation, financial and management planning; produc-
tion scheduling; surface and underground mine monitoring;
geotechnical stability; planning and equipment selection for difficult
mining conditions; innovative mining systems and equipment; dril-
ling and blasting operations; equipment selection procedures; equi-
Pment performance monitoring; equipment maintenance manage-
ment; expert systems; mine and equipment information systems.

Almgren, G., U. Kumar & N. Vagenas (eds.) 90 5410 314 0
Mine mechanization and automation – Proceedings of the second
international symposium, Luleå, Sweden, 7-10 June 1993
1993, 25 cm, 827 pp., Hfl. 250 / $140.00 / £93
Innovative mining systems: Non energy minerals (metals), indus-
trial minerals; Innovative mining systems: Solid fuel minerals; coal,
etc.; Mechanization & automation of drilling operations; Mech-
anized rock fragmentation; Material handling & data communica-
tion; Machine automation & control; Computer applications;
Human factors and safety, miscellaneous; Reliability and mainte-
nance of mining systems. Editors: Luleå Univ. of Technology.

Hustrulid, W. & M. Kuchta (eds.) 90 5410 173 3
Fundamentals of open pit mine planning and design
May 1995, 25 cm, c. 850 pp., 2 vols, Hfl. 245 / $125.00 / £90
(Student edn., 90 5410 183 0, 2 vols, Hfl. 125 / $65.00 / £46)
The book is divided into two parts. Part 1 consists of six chapters in
which the basic planning & design principles are presented: Mine
planning; Mine revenues & costs; Orebody description; Geometrical
considerations; Pit limits; Production planning. Much of the ac-
tual calculation involved in the design of an open pit mine is done by
computer. Two professional computer programs CSMine & VariO
have been specifically developed with the university undergraduate
learning environment in mind. These programs, their related tutors
& user manuals, together with a data set for the CSMine
Property, are subject of part 2 of this book. Six chapters involved are:
Introduction; CSMine property description; CSMine tutorial;
CSMine user’s manual; VariO tutorial & user’s guide; VariO refer-
ence manual.

Szwedzicki, T. (ed.) 90 5410 321 3
Geotechnical instrumentation and monitoring in open pit and
underground mining – Proceedings of the Australian conference,
Kalgoorlie, 21-23 June 1993
1993, 25 cm, 562 pp., Hfl. 210 / $125.00 / £79
Displacement monitoring; Stress measurement & monitoring;
Groundwater monitoring; Blast monitoring; Seismic activity moni-
toring; Environmental monitoring & Instrumentation as a tool for nu-
merical modelling. Editor: W.A. School of Mines, Kalgoorlie.

All books available from your bookseller or directly from the publisher:
A.A. Balkema Publishers, P.O. Box 1675, Rotterdam, Netherlands
For USA & Canada: A.A. Balkema Publishers, Old Post Rd, Brookfield, VT, USA